Christos Santis e seus colegas do Instituto de Tecnologia da Califórnia, nos Estados Unidos, conseguiram otimizar um equipamento já usado hoje, chamado laser semicondutor com retroação distribuída, ou S-DFB (distributed-feedback semiconductor).
Laser S-DFB
A luz pode transportar grandes quantidades de informação, com uma largura de banda cerca de 10.000 vezes maior do que as micro-ondas, que antes eram usadas nas comunicações de longa distância.
Mas, para tirar proveito de todo esse potencial, a luz do laser precisa ser tão espectralmente pura quanto possível - o mais próximo possível de uma cor única, ou de uma única frequência.
Quanto mais pura a cor do laser, mais informações ele pode transportar. É por isso que, há décadas, os engenheiros vêm tentando desenvolver um laser que chegue o mais perto possível de emitir apenas uma frequência.
Os lasers S-DFB são bons, mas eles foram desenvolvidos em meados da década de 1970 - sua pureza espectral, ou coerência, já não satisfaz a demanda crescente por largura de banda.
Originalmente, um laser S-DFB consiste em camadas cristalinas contínuas de materiais chamados semicondutores III-V - tipicamente arseneto de gálio e fosfeto de índio - que convertem em luz a corrente elétrica que flui através da estrutura em camadas.
O problema é que semicondutores III-V também são fortes absorvedores de luz, e esta absorção leva a uma degradação da pureza espectral.
Christos Santis encontrou a salvação onde poucos poderiam suspeitar: no silício, que não é mais afeito às tecnologias ópticas.
O novo laser continua usando os semicondutores III-V para converter a corrente elétrica em luz, mas armazena a luz em uma camada de silício, que não a absorve, gerando uma saída de luz de alta coerência.
Este elevado grau de pureza espectral - uma faixa de
frequências 20 vezes mais estreita do que é possível com o laser
S-DFB original - poderá ser especialmente importante para as
comunicações de fibra óptica do futuro.
Originalmente, os feixes de laser nas fibras ópticas transportavam informações em pulsos de luz, o que significa que o laser era ligado e desligado rapidamente para representar os 0s e 1s.
Com a crescente demanda por largura de banda, os engenheiros de sistemas de comunicação estão começando a adotar um novo método de registrar os dados nos raios laser que dispensa esta técnica "liga-desliga" - o novo método é chamado de comunicação por fase coerente.
Nas comunicações de fases coerentes, os dados são registrados em pequenos retardos no tempo de chegada das ondas. Esses atrasos - que duram por volta de 10-16 segundo - podem transmitir a informação com precisão mesmo ao longo de milhares de quilômetros.
Contudo, o número de possíveis retardos, e, assim, a capacidade de banda do canal, é fundamentalmente limitada pelo grau de pureza espectral do laser.
Esta pureza nunca pode ser absoluta - uma limitação imposta pelas leis da física - mas, com o novo laser, será possível chegar o mais perto possível da pureza absoluta.
Inovação Tecnológica